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Years: 10 - 12 Time: 2 -4 lessons Strands: Measurement, Number, Space

Related worksheets

o Investigation Sheet
o Recording Sheet

Summary

This lesson explores the concept of the gradient function, that is, the function that describes the way the gradient
changes.

Having focused on the idea of the gradient of a function through their own experiences with riding a bicycle up and
down hills, students are invited to explore the relationship between the x-value of the function and the gradient at
the point (x, y).

Secondary goals include:
* agrowing ability to visualise the shape of a gradient function just by looking at a graph
* recognition of the types of functions that gradient functions can be

* how this is related to the type of initial function
* awareness that continuity is an important feature of a graph for a gradient function to exist.



Function

GRADIENT function

Relating the gradient of a
function to the effort required
to ride a bicycle over the
function.
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Which has the biggest volume?
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(cutsq, vol)

Have we found the best
cut out square, or do we
need to keep looking?




Setting the problem up to use CALCULUS
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A function for the volume where x is size of the cut-out square
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202.51

So we were close, but the best size square is
indicated by the stationary point (where the
volume is maximized).

(cutsq,vol)




Calculus will let us find the exact values of the stationary point
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Solving the problem using CAS calculator

Define v(x)=(20—2-x)- (10—2- x)-x Done
< (1) 12- x2-120 x+200
dx The same concept, the

5 calculator just does all of
solve(12' x“-120- x+200=0,x) the "number-crunching".

=5 y3 -3 S5 y3d +3
() s (f5e)
3 3

solve(l.‘z'x2—120-x+200=0,x) V]

x=2.11325 or x=7.88675 ['
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The "Big Picture”

Here we can see

m the initial volumes we found,
m 13 lm *Unsaved < ofl] <

m the volume function we defined,

2520y (2.1132,192.4501)

m the gradient function,

- )
f2ix)=200-120"x+12"'x~
(’ ) m the solution where the gradient
(cutsq, vol) function is zero,
| E m the maximum volume of the
209 O\ . x|| cuboid.
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Trigonometry Walk
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Intro to solving trig equations

1 Use the unit circle to estimate both angles (within 1 degree

[ B accuracy) for the following trigonometric ratios.

Ratio angle 1 angle 2
tanA = -1

/ 1~ \| || sinA=-0.9| 245|295 ** **

1 \ | || cosa=0.3
\ \ | || cosA=-0.8
\ \ / sinA =0.3

\ o

P | Answers

Click on the circle.

A = 295 degrees






Making Monuments: Investigation Sheet No.1

Monuments are scattered all through the parks of Stonia. They are made so that the length of the paths leading
up to them is the same as the height of the monument. This is a Size 2 monument:
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Once the monuments and paths have been builtthey are tiled. The monuments and paths are both tiled with the

same size square tiles.
1. Make a Size 1 monument and its paths. How many tiles would be needed?

2. Make Sizes 2, 3, 4 & 5 and for each one work out the number of tiles needed to tile the monument and its
paths.

3. Organise the results you have so far. Can you predict the number of tiles needed for the Size 10 monument?

Check by drawing.

4. Imagine the Size 100 monument. How many tiles does it need? Explain your answer.
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Continuous v Discrete problems

7. What if a monument was built to a height of 5} blocks, or maybe 6.2 blocks? How could you find the number
of tiles needed?
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Make a table:
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When we express functions this way they are called
HYBRID functions (or piecewise functions).
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e Five [5] animals - horse, pig, cow, chicken, goat
\ Animal Pens

B s

-
% -

g

-

‘ Your Task
1. Arrange the animals in the pens so that:
e the cow is beside the chicken

¢ the horse is in the pen at the end
% o the pig comes after the cow

e the goat is beside the chicken

y 2. Find a different solution.

SON31Y4 UavAWdYd

1 Challenge
' \..'q How many solutions are there?
How do you know when you have found them all?

€ Mahematics Task Conare 2011 Twk 129




Arrange the animals in the pens so that

e the cow 1s beside the chicken

e the horse 1s 1n the pen at the end
e the pig comes after the cow

e the goat i1s beside the chicken



Is there another solution?
How many are there?

How will you know you have found them all?






the cow 1s beside the chicken *

the horse 1s in the pen at the end

the pig comes after the cow “

the goat 1s beside the chicken.
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Probability

If the animals wandered in from the
field and randomly selected their pens,
what 1s the probability that...

...the horse 1s next to the pig.

...the chicken is not in the end pen.




Even more puzzles

What if the five animals wandered in
from the field but there were only three
pensr

In how many ways coula the pens be
occupred?
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What if there were 7 pens available,
but only 4 animals to occupy them?
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You Need o
™ Twelve 21 blocks: six |( n cacl | b
s A bag’ 10 hade the blocks
i ran 3
Rules
o Deond I v and wih layer B
e Place e | ks m I [ o
o  Without looking. cach player take I ap m
e Plaver A wins a point if the colours are the SAME
¢ Maver B wins a poant if the colours are DNFFEREN
Your Task .t
|. Play several times and decide if the (2. 2) game is fawr "
Fair means both plavers have an equal chance of winning “
2. What happens if the comsbmation of blocks i the bag is changed” m
For example: (4, 3) = 4 red/ 2 blue ..or (5, 2) .or (6, 1) . (or 6, 5) or x
hallenge =2
Uaing up to sax blocks of each colour, there are only two dafleremt d

ninations of blocks that give a faar game

f chalbenge is 10 find those two games

» Twsk Comanc X .'4;_ £ ﬁ‘
e




Draw two blocks out of the bag.
You win if the blocks are the same colour?

Is this game fair?

If no, how can

If ves, why? . .
Y 4 you make 1t fair?



Same or Different?

Exploration
(Unit 1/2 Math Methods)




Introduction to the (1,2) game.
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Setting the challenge. Find fair games empirically.

G AME Pr (5) Pr (D)
(2) ()| 0244 | 0-T7o(
(2,2)| 0369 | 0.¢3]

CHALENGE -
Sctaredt BR A
TAR GAnT.




Combinations found empirically that we
could
_Ja) support with the computer software,
/ b) confirm using probability theory
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Using probability theory to prove fairness
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Games that appeared fair on the
computer were proved to be close,
but not perfect.







These combinations make perfectly fair games:

(13) (3¢) (60) (o)



Pairs of triangular numbers provide perfectly fair games.




Can you have a fair game with three colours?

Same rules: If I draw two blocks and they are
the same colour, I win.



Number

of

Blocks Pairs
BLUE 4 6
RED 5 10 ‘\{=IF(BZ>1,COMBIN(BZ,2),0)
GREEN 10 45 |

‘/} =SUM(C2:C4)
Numerator 61

Denominator 171 ‘“{=C0MB|N(SUM(BZ:B4),2)
Probability 0.3567 ' - .

N

' =B9/B10
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From The Classroom

Damian has also used Same Or Different with has Year 12 class. He was pretty impressed that they suggested using a tool developed for a totally
different investigation a year earlier in Year 11. That story is below. This story is about mathematicians asking the question What happens if...?
then taking an adventure together when even the teacher doesn't know the end point.



